Mixed Graphical Models for Causal Analysis of Multi-modal Variables
نویسندگان
چکیده
Graphical causal models are an important tool for knowledge discovery because they can represent both the causal relations between variables and the multivariate probability distributions over the data. Once learned, causal graphs can be used for classification, feature selection and hypothesis generation, while revealing the underlying causal network structure and thus allowing for arbitrary likelihood queries over the data. However, current algorithms for learning sparse directed graphs are generally designed to handle only one type of data (continuous-only or discrete-only), which limits their applicability to a large class of multi-modal biological datasets that include mixed type variables. To address this issue, we developed new methods that modify and combine existing methods for finding undirected graphs with methods for finding directed graphs. These hybrid methods are not only faster, but also perform better than the directed graph estimation methods alone for a variety of parameter settings and data set sizes. Here, we describe a new conditional independence test for learning directed graphs over mixed data types and we compare performances of different graph learning strategies on synthetic data.
منابع مشابه
Graphical Modelling of Multivariate Time Series
We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...
متن کاملCausal Effect Identification in Acyclic Directed Mixed Graphs and Gated Models
We introduce a new family of graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. We show that these models are suitable for representing causal models with additive error terms. We provide a set of sufficient graphical criteria for the identification of arbitrary causal effects when the new models contain directed and und...
متن کاملGraphical Analysis of Multi-Environment Trials for Barley Yield Using AMMI and GGE-Biplot Under Rain-Fed Conditions
The AMMI and SREG GGE are among the models that effectively capture the additive and multiplicative components of genotype × environment interaction (GEI) and provide meaningful interpretation of multi-environment trials’ data set in the breeding programs. The objective of this study was to assess the effect of GEI on grain yield of barely advanced lines and exploit the positive GEI effect us...
متن کاملModelling of Multivariate Time Series
We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs ...
متن کاملNegotiation for Calculating Causal Effects in Bi-Agent Causal Models
In this paper we introduce the paradigm of multi-agent causal models (MACM), which are an extension of causal graphical models to a setting where there is no longer one single computational entity (agent) observing or not observing all the domain variables V. Instead there are several agents each having access to non-disjoint subsets of V. The incentive for introducing cooperative multiagent mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1704.02621 شماره
صفحات -
تاریخ انتشار 2017